Flow by Powers of the Gauss Curvature

نویسندگان

  • BEN ANDREWS
  • PENGFEI GUAN
چکیده

We prove that convex hypersurfaces in Rn+1 contracting under the flow by any power α > 1 n+2 of the Gauss curvature converge (after rescaling to fixed volume) to a limit which is a smooth, uniformly convex self-similar contracting solution of the flow. Under additional central symmetry of the initial body we prove that the limit is the round sphere.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mean Curvature Flow with Convex Gauss Image

We study the mean curvature flow of complete space-like submanifolds in pseudo-Euclidean space with bounded Gauss image, as well as that of complete submanifolds in Euclidean space with convex Gauss image. By using the confinable property of the Gauss image under the mean curvature flow we prove the long time existence results in both cases. We also study the asymptotic behavior of these soluti...

متن کامل

Se p 20 02 Gauss Maps of the Mean Curvature Flow

Let F : Σ n × [0, T) → R n+m be a family of compact immersed sub-manifolds moving by their mean curvature vector. We show the Gauss maps γ : (Σ n , g t) → G(n, m) form a harmonic heat flow with respect to the time-dependent induced metric g t. This provides a more systematic approach to investigate higher codimension mean curvature flows. A direct consequence is any convex function on G(n, m) p...

متن کامل

Gauss Maps of the Mean Curvature Flow

Let F : Σ n × [0, T) → R n+m be a family of compact immersed submanifolds moving by their mean curvature vectors. We show the Gauss maps γ : (Σ n , g t) → G(n, m) form a harmonic heat flow with respect to the time-dependent induced metric g t. This provides a more systematic approach to investigating higher codimension mean curvature flows. A direct consequence is any convex function on G(n, m)...

متن کامل

‎Spacelike hypersurfaces with constant $S$ or $K$ in de Sitter‎ ‎space or anti-de Sitter space

‎Let $M^n$ be an $n(ngeq 3)$-dimensional complete connected and‎ ‎oriented spacelike hypersurface in a de Sitter space or an anti-de‎ ‎Sitter space‎, ‎$S$ and $K$ be the squared norm of the second‎ ‎fundamental form and Gauss-Kronecker curvature of $M^n$‎. ‎If $S$ or‎ ‎$K$ is constant‎, ‎nonzero and $M^n$ has two distinct principal‎ ‎curvatures one of which is simple‎, ‎we obtain some‎ ‎charact...

متن کامل

“bubbling” of the Prescribed Curvature Flow on the Torus

Abstract. By a classical result of Kazdan-Warner, for any smooth signchanging function f with negative mean on the torus (M,gb) there exists a conformal metric g = egb Gauss curvature Kg = f , which can be obtained from a minimizer u of Dirichlet’s integral in a suitably chosen class of functions. As shown by Galimberti, these minimizers exhibit “bubbling” in a certain limit regime. Here we sha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015